Analysis of Chlorates and Perchlorate Residues in Milk and Powders

Martin Danaher, Clement Douillet, Mohammad Hossain
Food Safety Department, Teagasc, Dublin, Ireland
Chlorate background

- Chlorate (ClO₃⁻) is a substance that is no longer approved as a pesticide (CD 2008/865/EC).

- ClO₃⁻ is formed as a by-product when using chlorine, chlorine dioxide or hypochlorite for the disinfection of drinking water, water for food production and surfaces coming into contact with food.

- WHO guideline of 0.7 mg/L (700 ppb) for ClO₃⁻ in drinking water.
Toxicological concern

- Concern because chlorates are a competitive inhibitor of iodine uptake in the thyroid.

- Its presence in food a potential health concern for vulnerable groups, particularly infants, pregnant women and people with thyroid dysfunction.

- Can cause damage to red blood cells.
Interpretation for Infant Formula (IF)

- MRL for Reconstituted IF = 0.01 mg/kg
- Reconstituted IF = 25.2 g powder + 180 mL H2O.
- Dilution factor (w/w) = (25.2g + 180 g)/25.2 g = 8.14
- 0.01 mg/kg Recon. IF ~ 0.0814 mg/kg IF (powder).
- IF contains approx. 50% SMP, ~0.1628 mg/kg (SMP)
- Milk and SMP need to be < 0.02 and <0.16 mg/kg, resp.
Analytical methodology
Analytical challenge

- Very small polar molecules, which make it difficult to achieve selective analysis.
- Need selective detection i.e. MS or MS/MS to achieve low levels of detection.
- Due to high water solubility speciality chromatographic columns or ion chromatography is required.
Analytical methods

- Very few published methods available for milk or dairy powders.

- Most methods use Ion chromatography coupled to mass spectrometry.

- EUROL method available using an alternative Hypercarb LC column.

- The best methods are unpublished.
Sample Preparation Procedure for Milk

1. Weigh 5g of Milk
2. Add 100 μL isotopically labelled internal standard
3. Centrifuge 10 min @ 3500 rpm
4. Take 2ml (~2g) skimmed milk carefully avoiding the fat layer at the top
5. Take 5 ml and Conc. under N₂, @ 30 °C
6. Centrifuge 10 min @ 3500 rpm
7. Shake at 200 rpm for 20 min
8. Add 8 ml ACN and 100 μl acetic acid
9. Filter (0.2 μm PTFE) and inject in UHPLC-MS/MS
LC Separation Conditions

Column: Poroshell PFP 120, 50 x 2.1mm (1.9 µm)

Temp: 40°C

Mobile phase A: 1% Acetic Acid in Water
Mobile phase B: Methanol

Flow: 0.6 mL/min

Gradient: 0 min 100% A
0.99 min 100% A
1.0 min 0% A
1.79 min 0% A
1.80 min 100%A
2.8 min 100%A

Run Time: 2.8 min

Injection Volume: 2 µL

Needle Wash: Methanol:Water (50:50, v/v)
QqQ MS Conditions

Electrospray ionisation with Jet Stream Source

- Drying Gas: 150°C, 8 L/min
- Sheath Gas: 400°C, 11 L/min.
- Nebuliser: 45 psi
- Capillary: 2000 V
- Nozzle: 0

MS Conditions
- ESI Polarity: Negative
- Scan Type: Dynamic MRM
- Cycle time: 500 ms
- ΔEMV: 0 V

<table>
<thead>
<tr>
<th>Compound</th>
<th>Transition (m/z)</th>
<th>Dwell</th>
<th>FV</th>
<th>CE</th>
<th>CAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorate</td>
<td>84.9 > 68.9 82.9 > 66.9</td>
<td>124</td>
<td>50</td>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18O3-Chlorate</td>
<td>89 > 71</td>
<td>124</td>
<td>50</td>
<td>27</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Perchlorate</td>
<td>101 > 84.9 99 > 92.9</td>
<td>124</td>
<td>128</td>
<td>31</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18O3-Chlorate</td>
<td>107 > 88.9</td>
<td>124</td>
<td>128</td>
<td>35</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Method Sensitivity: Chlorate

Calibration standard 1: 0.001 mg/kg in milk.

Lower Limit of reporting: 0.002 mg/kg in milk.
Method Sensitivity: Perchlorate

Calibration standard 1: 0.001 mg/kg in milk.

Lower Limit of reporting: 0.002 mg/kg in milk.

Quantitation Qualification Internal Standard
Accuracy and Precision

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Fortification Level (µg/kg)</th>
<th>Between days study (n =2 x 10d)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean (µg/kg)</td>
<td>S.D. (µg/kg)</td>
<td>CV (%)</td>
<td>Trueness (%)</td>
<td></td>
</tr>
<tr>
<td>Chlorate</td>
<td>2</td>
<td>2.04</td>
<td>0.18</td>
<td>8.6</td>
<td>92-112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>99.0</td>
<td>2.5</td>
<td>2.5</td>
<td>95-105</td>
<td></td>
</tr>
<tr>
<td>Perchlorate</td>
<td>2</td>
<td>2.04</td>
<td>0.13</td>
<td>6.2</td>
<td>95-108</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>98.8</td>
<td>1.46</td>
<td>1.48</td>
<td>94-101</td>
<td></td>
</tr>
</tbody>
</table>
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 727864 and from the Chinese Ministry of Science and Technology (MOST).

Disclaimer: The content of this presentation does not reflect the official opinion of the European Commission and/or the Chinese government. Responsibility for the information and views expressed therein lies entirely with the author(s).