

Analysis hazards in food : from one-by-one determination to class-by-class screening and finally to chemometrics-based discrimination

Feng Zhang Institute of Food Safety Chinese Academy of Inspection and Quarantine(CAIQ)

Content §

1. Background

2. The One-by-One Determination Method Based on Database Searching

3. The Class-by-Class Screening Method Based on Fragmentation Markers

......

4. The Discrimination Method Based on Chemometrics

.....

5. Summary

.....

1. Background

Food safety incidents occur frequently

Plasticizer everywhere

Melamine in milk powder

Recycled oil incident

•••••

melamine clenbuterol cyclamate Sudan malachite Red green Ňţ_-OH но

More and more novel chemical hazardous substances are emerging

1. Background

hazardous substance

- **Known** : pesticide, veterinary drug, illegal substance ;
- **Novel :** new structural analogues to known hazardous substances with similar toxicity ;

Wnknown : unknown substance produced during food processing or food storage.

The challenge to detect

Known: how to increase the throughput of the method?

Novel: how to the explore the new structural analogues?

Unknown: how to explore it and determine the food's safety or not?

The solution

Known: One-by-One Determination/screening Method ;

Novel: Class-by-Class Screening Method ;

Unknown: Discrimination method based on chemometrics .

1. Background

.....

2. One-by-One Determination Method Based on Database Searching

3. The Class-by-Class Screening Method Based on Fragmentation Markers

......

4. The Discrimination Method Based on Chemometrics

.....

5. Summary

......

2. The One-by-One Determination Method Based on Database Searching

Classic multi-residues determination method:

400~500 compounds are determinated using MS in MRM mode

雨华人民共和	GR	R/S	KS X	GB
	中华人民	中华人民共	中华人民共和国	国家标准
497	500	475	448	GB 23200.13—2016 代替GB/T 23205—2008
食品安全国 蜂蜜、果汁和果酒中 化学品残留; 气相色谱- National boot side Determination of 407 period reviews houre, But Cas chromotography - i	食品 水果和蔬菜中 み ろ です Determantion of 500 prests Gas chross	食品子 粮谷中 475 种农 气相: Determination of 475 protecti Gas chromate	合品安全国家 茶叶中 448 种衣药及4 残留量的測 液相色谱-反道 ¹¹ ¹² ¹⁴ ¹⁵ ¹⁵ ¹⁵ ¹⁵ ¹⁵ ¹⁴ ¹⁵	示准 相关化学品 复 就态- esidoes in tea pectrometry
2016-12-18表考 中华人民共和国国家卫生非 中华人民共和国攻业部 国家會品药品监督管理总非	2016-12-18 東布 中华人民共和国国 中华人民共和国农 国家食品約品监督	2016-12-18 麦布 申华人民共和国国家 申华人民共和国农业 国家食品药品监督督	2016-12-18世布 中华人民共和国国家卫生和计划 中华人民共和国国家世纪局 国家食品药品减繁管理总局	2017-06-18 实施 1生育委员会 发布

Disadvantages: Time-cousuming Unstable for standard solvent Wasteful for the organic reagent

2. The One-by-One Determination Method Based on Database Searching

Screening Result

High Throughput Screening Method

MS Database

/

- ✓ Advantage : high throughput
- ✓ Disadvantage : hazards which are not in the database can not be detected, even the novel structural analogues of known hazardous substances

For example : cephalosporin

More and more novel derivatives have appeared

How to explore the structural analogues?

Content š

1. Background

.....

2. One-by-One Determination Method Based on Database Searching

3. The Class-by-Class Screening Method Based on Fragmentation Markers

......

4. The Discrimination Method Based on Chemometrics

.....

5. Summary

......

3.The Class-by-Class Screening Method Based on Fragmentation Markers

Phenylethanolamines

β-receptor agonists have a phenylethanolamine structure,
which benzene ring has an alkaline β-hydroxyl side chains, so that they are easy to dehydration.

fragmentation mechanism of **B**-receptor agonists

Cimaterol(西马特罗)

Clorprenaline(氯丙那林)

Dehydration - propyl group loss

3.The Class-by-Class Screening Method Based on Fragmentation Markers

fragmentation mechanism of **B**-receptor agonists

Dehydration – butyl group loss

Cinnamic esters

If the MSMS produces stable peak m/z131, m/z103, m/z77, we can infer that it may be cinnamate esters

13

3.The Class-by-Class Screening Method Based on Fragmentation Markers

Compounds with the same skeleton have the similar fragmentation pathway. It could be used for the exploration of novel derivative in food.

MS fragmentation pathway database was constructed.

NO.	Compound Name	Formula	Structure	Ionization mode	Mass [M/Z]		MS^2		Fragmentation pathway
列1 ~	列2 *	列3 *	列4 🔻	列5 *	列6 🔻	列7 🔹	列8 ×	列9 🔻	列10 🔻
111	Cefotaxime	C16H17N5O7S2	HAN CH HAN HAN HAN HAN HAN HAN HAN HAN HAN HA	[M+H]+	456.06422	167.02698	324.05771	396.04221	Ange : Ange
112	Cephalexin	C16H17N3O4S		[M + H]+	348.10125	158.02681	174.05466	106.06541	
113	Cefazolin	C14H14N8O4S3		[M+H]+	455.03729	156.01086	323.05505	295.06027	1995 = 1999
114	Cefradine	C16H19N3O4S	C + H + s + H + s + H + o H + o	[M + H]+	350.11690	176.07030	158.02684	108.08105	
115	Cefadroxil	C16H17N3O5S	HO H20 O OH	[M+H]+	364.09617	192.06534	174.05476	347.06909	
116	Cefamandole	C18H18N6O5S2		[M+H]+	463.08529	158.02701	347.06937	185.03789	282 5 - 222 5

- capacity: 1092 compounds
- includes: fragment ions, neutral loss, fragmentation pathway
- accuracy of mass number: 0.0001Da

3.The Class-by-Class Screening Method Based on Fragmentation Markers

Similar structural substances have the same MS fragmentation mechanism, MS fragmentation markers of a class compounds can be used to establish a "class-by-class " screening method.

52 MS fragmentation markers were determied.

16

3.The Class-by-Class Screening Method Based on Fragmentation Markers

A class of compounds can be found by scanning fragmentation marker

Example: the substance in pork was screened class by class Based on fragmentation marker

new banned β-lactam antibiotics in pork: ceftazidime

Analytical Methods, 2017, 9(2): 6534-6548

- Advantage : structural analogues can be screened class by class, which supply the solution to the abuse of novel structural analogues with similar toxicity to know hazardous substances.
- Disadvantage : the unknown substances produced during food process or storage can not be explored by this method.

The abuse of novel structural analogues

The risk during food process and storage

Content §

1. Background

2. One-by-One Determination Method Based on Database Searching

3. The Class-by-Class Screening Method Based on Fragmentation Markers

......

4. The Discrimination Method Based on Chemometrics

.....

5. Summary

......

4. The Discrimination Method Based on Chemometrics

The workflow of discrimination method in milk overheating

raw material

Heating in different conditions sample pretreatment data acquisition

$d_{1}^{(1)}$

validation the markers

4. The Discrimination Method Based on Chemometrics

>>> Determination of overheating markers

The groups of sample

Grou p	Heat Temp.	Number
1	50°C	20
2	60°C	20
3	70°C	20
4	80°C	20
5	90°C	20
6	100°C	20
7	110°C	20
8	120°C	20
9	130°C	20
10	140°C	20
11	150°C	20

Five markers were determined

No	name	Molecular Formula	Molecular Weight
1	Lysinoalanine	$C_9H_{19}O_4N_3$	233
2	Carboxymethyl- L-lysine	$C_8H_{16}O_4N_2$	204
3	Carboxyethyl-L- lysine	$C_9H_{18}O_4N_2$	218
4	Furosine	$C_{12}H_{18}O_4N_2$	254
5	Pyrraline	$C_{12}H_{18}O_4N_2$	254 2

4. The Discrimination Method Based on Chemometrics

The correlationship between these markers amount with temperature

Carboxymethyl-L-lysine

Carboxyethyl-L-lysine

pyrraline

Content §

1. Background

.....

2. The One-by-One Determination Method Based on Database

.....

3. The Class-by-Class Screening Method Based on Framentation Markers

4. The Holographic Discrimination Technology Based on Chemometrics

5. Summary

5. Summary

Summary

- For the known compounds listed in the standard or regulations, a one-by-one determination method based on database searching was developed.
- For novel structural analogues similar to known compounds, a class-by-class screening method based on fragmentation markers was developed.
- For unknown compounds procued during food process or storage, a discrimination method based on chemometrics was developed.

Acknowledgements

Fund support : National Key Research and Development Program

